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.Abstract – This paper presents a complete model for 
solid cylindrical magnetic actuators. The half-order 
model shows the eddy current effects on both the 
current stiffness and the displacement stiffness. 
Experiments conducted demonstrate the accuracy of 
the model. 

 
Index Terms – Eddy currents, displacement stiffness 

and current stiffness 

I.  INTRODUCTION 

In practice and in the literature, a magnetic levitation 
system operated in current mode is usually modelled by 
the block diagram shown in Fig. 1, 
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Fig. 1: Block Diagram for a Magnetic Actuator Operated in Current 
Model 

In Fig. 1, the static gains iK and xK are generally called 
current stiffness and displacement stiffness in literature 
respectively, and are define as 
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This model is accurate only for laminated magnetic 
actuators where eddy currents may be ignored. The 
analytic results obtained in [1, 2] clearly demonstrate the 
effect of eddy currents on current-force relationship, when 
a solid actuator is employed. 

In this paper, relation between displacement and 
mechanical force for solid cylindrical actuators of the 
geometry shown in Fig. 2, which is also the one used in 
[1], will be studied with eddy currents being taken into 
consideration.  

II. EFFECT OF CHANGING AIR GAP ON MECHANICAL FORCE 
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Fig. 2: Exploded View of A Solid Cylindrical Actuator 
 
Suppose that the bias current bI  and the nominal air gap 

length ng  have been chosen for the solid cylindrical 
actuator. When there is a perturbation pg  to the nominal 
air gap, the flux inside the actuator will consist of two 
parts, the bias flux and the perturbation flux. The bias flux 
distribution will be the same as that examined in [1] when 
the frequency was zero, and the perturbation flux will be 
similar to that considered in [1] for the varying field. By 
superposition, the magnetic circuit approach employed in 
[1] may be used to develop a model for the relation 
between displacement and mechanical force, as will be 
demonstrated herein. In this paper, the actuator geometry 
division presented in [1] will be adopted and the effective 
reluctance of each element of the geometry developed in 
[1] will be used.  
   Select a small annular section of inner air gap at r. At 
any time t, the magnetomotive forces on the surfaces of the 
flotor and the stator consist of bias and perturbation terms: 
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Fig. 3: Magnetomotive Force across a Small Annular Section of Inner Air 
Gap 
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Due to the perturbation of air gap length, the reluctance of 
the small annular air gap section may be written as  
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Define the nominal reluctance of the gap section as 
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Assuming )(tg p  is small, the flux passing through εgR  at 
any time t, is 
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Substituting (2) into (4a) yields 
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Assuming the perturbation terms are small and then 
neglecting the higher order term, one may separate the flux 
into a time-invariant (bias) and time-varying (perturbation) 
components: 
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Assuming a uniform bias flux distribution in the air gaps 
yields 
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where 0R  and 0

1R  are the static reluctances of the actuator 
flux path and Element 1 with fixed air gap ng  
respectively. Combining (5) and (6) produces 
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Laplace transformation of (7b) yields 
 

( )
[ ]),(),(1)(1

),(),(

0

0
1 srFsrF

Rg
sg

R
RNI

R

trsr

p
fl

p
stn

gn

pb
n
g

pp

−⋅+⋅⋅−=

=

εε

εε φφ L
 (7c) 

 

   

ε1R ε2R

),( srF p
fl ε−

0

εgR
ε1R ε2R

),( srF p
fl ),( srF p

fl ε+

)(1 sF p

),( srF p
st ε− ),( srF p

st ),( srF p
st ε+

 
Fig. 4: Reluctance Network for Element 1 

 
    Using the reluctance network model of Element 1 shown 
in Fig. 4 and conservation of flux, one can obtain 
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Due to the symmetry of the reluctance network 
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Substituting (7c) and (9) into (8) yields 
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Taking the limit of (10) as 0→ε  yields an ordinary 
differential equation 
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where 
nr gµ

αα 22
1 = . From the analysis in [1], the solution to 

(11) is clearly 
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From (9) and (12a), we have 
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Substituting (12) into (7c) generates 
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The perturbation flux can be obtained by the following 
integral 
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where 1R  is the effective reluctance of Element 1 with 
nominal air gap ng  
    Using the same approach employed above, one can 
show that for Element 3 
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where 3R  is the effective reluctance of Element 3 with 

nominal air gap ng , and )(3 sF p  is the magnetomotive force 
across this element. From [1], we know that for Element i, 
i=2, 4, 5 and 6 
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where iR  is the effective reluctance of Element i, )(sF p

i  
is the magnetomotive force across Element i. Therefore, 
we have,  

n

pib
pi

p
i g

sg
R

RNIsRsF
)(

)()( 0

0

⋅+= φ , when i=1, and 3   (15a) 

)()( sRsF pi
p

i φ= , when i=2, 4, 5 and 6                      (15b) 
 
The magnetomotive force across each element consists of a 
bias term and a perturbation term, 
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where the bias terms are constant. According to Ampere’s 
law,  
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while for the bias static field  
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where )(sI p  is the perturbation current, 
{ }bp itisI −= )()( L . Substituting (15) into (18) yields 
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the cross sectional areas of the inner and outer poles 
respectively, one can obtain  
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From the treatment in [1], the simplified model of (20a) is 
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Fig. 5: Directions of the Mechanical Force and Displacement 

 
According to the direction of mechanical force shown Fig. 
5, pp gX −=  
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From [1], we know that the total mechanical force )(tf  is 
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where ),( rtB  includes bias and perturbation terms. 
Therefore, the total mechanical force also consists of bias 
and perturbation terms 
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Assuming perturbation flux density is small, we have 
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Taking Laplace transform of (23) yields 
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Equation (25a) can written as 
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for the solid actuator. Equation (25b) shows that in a solid 
magnetic actuator, due to the appearance of eddy currents, 
both current stiffness and displacement stiffness are 
attenuated at the rate of a half-order of frequency. From 
(25b), one can develop a block diagram representation for 
a solid magnetic actuator operated in current mode, as 
shown in Fig. 6 
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Fig. 6: Block Diagram for a Solid Actuator Operated in the Current Mode 

III. EXPERIMENT 

    In order to examine the accuracy of the analytic model 
developed in section 2 and to investigate the performance 

of robust controllers that will be designed in a future 
research effort, a test rig, shown in Fig. 7, was carefully 
designed, built and calibrated.  
     

  
 

Fig. 7: The Test Rig 
     
    The primary objective in experiment design was to 
develop a system that could be easily modelled from a 
mechanical viewpoint, yet still encompasses all the 
important characteristics of magnetic levitation systems 
using solid actuators. 
    In the test rig, a beam, supported by a compliant 
aluminium flexure, is allowed one degree of freedom 
translation. A solid magnetic actuator and a shaker, located 
on each end of the beam, provide control forces. The flotor 
and the stator of the magnetic actuator are attached to the 
beam and the actuator stand respectively by adapters. The 
actuator stand is bolted down to a steel base plate. The 
shaker is attached to the beam by two C shaped adapters, 
and is bolted down to the shaker base. Both the base plate 
and shaker base are attached to a surplus milling machine 
bed for a foundation. 
   The rigorous model (25b) for cylindrical actuators shows 
that the eddy current effects on actuator dynamics may be 
represented by the coefficient, c, of the half-order term. It 
is desirable to examine how the analytic model fares in 
comparison to experimental results. Towards this end, a 
swept sine test was conducted to determine experimentally 
the frequency response of the transfer function, pp IX / , 
see Fig. 8 
 

 
Fig. 8: A Swept Sine Test Result of pp IX /  



According to the block diagram of the experimental test rig 
shown in Fig. 9,  
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Fig. 9: Block Diagram of the Experimental Test Rig 
      
    We conducted calibration tests to determine all the 
parameters within this model with the exception of the 
eddy current effect coefficient c. Then, an estimate of c can 
be obtained using the frequency domain identification 
approach presented in [3]. Table 1 lists the calibration 
values of all the parameters in (26) with the exception of 
eddy current coefficient c. 
 

 
 

    Employing the frequency domain identification 
approach in [3] on (26) with the calibrated parameters in 
Table 1 and the experimental frequency response data from 
1 to 300hz, the identified value of the eddy current 
coefficient is webberamperecI / 12878=  (Superscript I 
indicates the identified value). From [1], we have a 
theoretical value webberamperecT / 14710= . Fig. 10 
shows the frequency response of the transfer function 
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 with Icc =  and with Tcc = . Fig. 11 and 12 

presents a comparison among the experimental data of 
)(/)( sIsX pp , theoretical values calculated  from (26) with 

Icc = , with Tcc = , and with 0=c . Figure 10-12 show 
that the eddy current effect predicted by the analytic model 
from (25b) is very close to what was observed from 
experimental tests, thus indicating the accuracy of the 
analytic model.  

     For further model comparison, a swept sine test was 
conducted to obtain the frequency response of )(/)( sIsA p , 
where )(sA  is acceleration of the beam. Theoretical values 
calculated with Icc = , with Tcc =  and with 0=c  for 

)(/)( sIsA p  were compared with the experimental data in 
Fig. 13 and 14. This again demonstrates the accuracy of 
the analytic model. 
 

 
Fig. 10: Frequency Response of ( )00 / RscR +  with Icc =  and 

with Tcc =  
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Fig. 11: Experimental Data and Theoretical Values for pp IX /  
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Fig. 12: Zoom-in View on the Magnitude plot in Fig. 11 
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Fig. 13: Experimental Data and Theoretical Values for pIA / -

Magnitude Plot 
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Fig. 14: Experimental Data and Theoretical Values for pIA / -Phase Plot 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

In this paper, the effect of changing air gap length on 
mechanical force produced by a solid cylindrical magnetic 
actuator was studied by adopting the magnetic field 
analysis approach developed in [1]. A complete analytic 
model, which shows the effect of eddy currents on both the 
displacement stiffness and the current stiffness, was 
derived. Experiments conducted prove the accuracy of the 
model.     
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